CSE 210: Computer Architecture
Lecture 21: Floating Point

Stephen Checkoway
Slides from Cynthia Taylor



Today’s Class

 Start floating point



CS History: IEEE 754-1985

e

A

L3
¥ g v.r'
 F

7

=N

}
SRR
or - % “f’
¥ =
5 :
i i e

William Kahan
Photo credit: George M. Bergman, CC BY-SA 4.0

Pre-1980, different ISAs used different floating point
implementations

In 1976, John Palmer was managing implementing a
floating-point coprocessor at Intel, and wanted a
standard floating point

He went to William Kahan, at UC Berkeley, who worked
with Intel to develop a floating point standard

Kahan, Jerome Coonen and Harold Stone put together a
public draft proposal based on Kahan’s work with Intel

This standard was implemented first by Intel in 1980,
and then by other manufacturers

In 1985 it became the official IEEE standard, and stayed
the standard until it was updated in 2008



Floating Point

* Problem: Need a way to store non-integer values
* Including numbers with very large and very small magnitudes

 Want to do this the same way for every computer



Base 10

¢ 123.456=1x10°+2x10'+3x10°+4x10*+5%x10%2+6x 103

* Digits to the left of the decimal point are multiplied by
nonnegative powers of 10

* Digits to the right of the decimal point are multipled by negative
powers of 10



Base 2

Same thing in base 2 (or any base)
110.011=1x2+1%x2'+0x2°94+0%x21+1%x2?2+1x23

Binary digits to the left of the binary point are multiplied by
nonnegative powers of 2

Binary digits to the right of the binary point are multiplied by
negative powers of 2



101.10001,

101.10001,

Integer part is 101, =
Fractional part is 0.10001, =

Total is



Normalized form of numbers in base 10

e Scientific Notation
e 1.2825 x 102
e 2.004 x 1038
e 3.74 x10%/
e -7.888889 x 1040

e Normalized Form

— Always multiply by power of 10
— Always one nonzero digit before the decimal point



Computers use a normalized version in base 2

* Floating Point Notation
¢ 1.11, x 22
* 1.0101, x 2127
» 1.110001, x 2-126
» -1.0001, x 280

* Normalized Form
— One nonzero digit before deetmal binary point
— Multiplied by power of two



We know 101.10001, = 5.53125. What is
1.0110001, x 22

A. 1.37578
B. 5.53125
C. 22.0125

D. None of the above



—17.125 in noramlzied binary

Step 1. Convert integer part: 17 =
Step 2. Convert fractional part: .125 =
Step 3. Add integer and fractional parts: 17.125 =

Step 4. Normalize:

Step 5. Add sign: —=17.125 =



—0.75 in Binary is
A. —1.1,x 2
B. —1.1, x 22
C. -1.001011, x 2
D. —1.001011, x 272

E. None of the above



1.2825 * 102 in Binary is

. 1.000000001, x 2’
. 1.000000001, x 2°
. 1.1001000011001, x 2°

. 1.000000001, x 2’

. None of the above



Goal: Represent (-1)* * 1.x * 2¢ in 32 bits

Divide up 32 bits into different sections
1 bit for sign s (1 = negative, 0 = nonnegative)
8 bits for exponent e

23 bits for significand 1.x



Goal: Get the most out of 32 bits

* The first number before our deeimal binary point is always 1
—1.0001 * 24
—-1.1011 * 2°16

* We don’t need to represent it in our remaining 23 bits—it is
implicit!



(-1)° * 1.x * 2¢
1 bit for sign s (1 = negative, O = positive)
8 bits for exponent e

0 bits for implicit leading 1 (called the “hidden bit”)

23 bits for significand (without hidden bit)/fraction/mantissa x

sign exponent (8 bits) fraction (23 bits)
| | | |

olol1]1[1|1]1]0lo]o]1|olo]ololo]olololololololololo]olo|o]olo]o
31 30 53 22 (bit index) 0




1.001100101 * 27 as a single word

* 1.001100101 * 27 as a single word becomes
— Sign =
— Exponent =

— Fraction =



If we gave more bits to the exponent, and
fewer to the fraction, we could represent

. Fewer individual numbers

. More individual numbers

. Numbers with greater magnitude, but less precision

. Numbers with smaller magnitude, but greater precision



Want To Make Comparisons Easy

e Can easily tell if number is positive or negative
— Just check MSB bit

* Exponentis in higher magnitude bits than the fraction
— Numbers with higher values will look bigger (as integers)
— 000000111 10000000000000000000000 =1.1 * 27
— 0 00001000 10000000000000000000000 = 1.1 * 28



Problem with Two’s Compliment exponents

0 00000111 10000000000000000000000 = 1.1 * 2’
0 00001000 10000000000000000000000 = 1.1 * 28
011111000 10000000000000000000000 =1.1 * 23

Solution: Get rid of negative exponents!

— We can represent 28 = 256 numbers: normal exponents -126 to 127
and two special values for zero, infinity, (and NaN and subnormals)

— Add 127 to value of exponent to encode it, subtract 127 to decode



(-1)s * 1.x * 2¢
1 bit for sign s (1 = negative, 0 = positive)
8 bits for exponent e + 127

0 bits for implicit leading 1 (called the “hidden bit”)

23 bits for significand (without hidden bit)/fraction/mantissa x

sign exponent (8 bits) fraction (23 bits)
| | I |

olol1]1]1]1|1|olololz|olololololololololololo]ololololololololo]l = 0.15625
31 30 53 22 (bit index) 0




Encode 1.000000001 * 27 in 32-bit Floating Point
A.0 00000111 00000000100000000000000
B.0 00000111 10000000010000000000000
C.0 10000110 00000000100000000000000
D.0 10000110 10000000010000000000000

E. None of the above



How Can We Represent 0 in Floating Point (as
described so far)?
. 0 00000000 00000000000000000000000

. 001111111 00000000000000000000000

.- 100000000 00000000000000000000000

. More than one of the above

. We can’t represent O



Special Cases

Zero 0 0
Infinity 255 0
NaN 255 Nonzero



Exception Events in Floating Point

* Overflow happens when a positive exponent becomes too
large to fit in the exponent field

* Underflow happens when a negative exponent becomes too
large (in magnitude) to fit in the exponent field

- One way to reduce the chance of underflow or overflow is to
offer another format that has a larger exponent field

- Double precision — takes two MIPS words

s|E (exponent) F (fraction)
1 bit 11 bits 20 bits

F (fraction continued)
32 bits




Reading

* Next lecture: Floating Point
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